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Section VIIL
MAGNETIC TRAPS

INVESTIGATION OF CHARGED PARTICLE MOTION IN MAGNETIC TRAPS
OF ACUTE GEOMETRY

K. D. Sinel'nikov, N. A. Khizhnyak, N. S. Repalov
P. M., Zeydlits, V. A. Yamnitskiy, Z. A. Azovskaya

Analysis of the characteristics of charged-particle
motion in several practically encountered axisymmetric mag-
netic fields of acute geometry. The specific features of
particle trajectories determined by numerical integration of
the equations of motion are examined.

Several authors (Ref. 1-3) have investigated the motion of charged /388%*
particles in acute-angle traps. However, up until recently there had been
no comprehensive explanation of all the characteristics of the motion. This
may be explained to a certain extent by the difficulties éntailed in an
analytical investigation of the magnetic fields throughout the entire trap,
as well as the difficulty entailed in integrating the equations of motion.
In the simplest form, such a magnetic field may be determined by the relation-

ships
H, =ar, H,= — 2az

(1)
This field exists in the central region of two circular currents.
The equations of particle motion in the field (1) are nonlinear, and therefore
the particle trajectories may be obtained by numerical methods as a final
result. However, a great deal of information on this motion may be obtained
from general considerations.

This article investigates the characteristics of charged particle motion
in certain specific magnetic fields whose force lines make acute angles and
which have axial symmetry. Particle trajectories which are found by numerical
integration of the equations of motion are discussed.

Magnetic Fields of Acute~Angle Traps

The magnetic field throughout the entire trap satisfies the equations
rotH=0;, divH=0
and may be described by means of the scalar magnetic potential ¢ which
satisfies the Laplace equation A® = 0. In the case of fields whose force lines /389
make acute angles and which have axial symmetry, the solution of the Laplace

equation, which is symmetrical with respect to the z = 0 plane, has the
following form

D = 2 Ando(kar) cos k,z, (2)

n=0

* Numbers in the margin indicate pagination in the original foreign text.



or ©
D= Ando (Ryr) ch k2,
~where the amplitude An and the separation of variable constants kn may be

determined by the values of the fields at the trap slits.

~

Figure 1 Figure 2

It is assumed in this study that throughout the entire trap the magnetic
field may be described by only one component in the sums (2).

In the first case, the magnetic field then has the following form
H, = Hgl, (kr) cos kz,

3
H,-:—Holo(kf)SinkZ, ( )
and the equation of the force lines is
d_H,
TE'=:7E’
i.e.,
rly (kr)sin kz = const;
In the second case, we have )
H, = HyJ (kr) ch kz,
r 0 l( f)C < (4)

H, = — Hyl,(kr) sh kz
with the equation of the force line

(kr) Jy (kr) shkz = const.

Figures 1 and 2 show the behavior of the force lines for magnetic traps
of the first and second kind.

Traps of the first type have a magnetic field which is characteristic /390
for the customary traps of the "Picket Fence" type. The second type of trap
has the form of a plane trap whose radius is not limited and whose
ends are bounded by "magnetic walls" with negative magnetic field
curvature. Such a type of '"magnetic wall' may be produced by a system of
concentric conductors with a current whose direction alternates.



The single azimuthal component (which differs from zero) of the vector
potential A¢ has the follow1ng form for the fields (3) and (4)

Aq, = — 1l (kr) sin kz,

Ap = —— Jl (fer) sh kz.

In the case of kr <<1 and kz << 1 the fields (3) and (4) change into
(1). However, in contrast to the field (1), they are characterized by two
parameters Ho and k, which determine the magnetic field strength in the

trap mirrors as well as its geometric dimensions.

In the kz = g--planes, the magnetic field has only the component HZ.
If I, is the radius of the magnetic mirror, then the magnetic induction flux

through the mirror may be written as:
O — 2an

rol 1 (kry).

This flux leaves through half of the c1rcu1ar slit which has the width Az and
which is located at a distance R from the system axis of symmetry:

® = 20 Ry, (kR) sin 252 ke

Consequently, the magnetic mirror rad1us is related to the slit width by the
following relationship

fo’[(kl'o)_ . Eﬁ ‘
RILER) — 77 (5)

This relationship follows from the equation of the force line.

Magnetic traps of the first type will be employed in the future, al-
though many relationships may be readily generalized to traps with "magnetic
walls",

The parameter k is related to the trap length L by the obvious equation

n
k=,
Therefore, expression (5) may be written in the following form
Ko
roli {7 | . Az (6)
.__.._‘—“R - = Slnﬂ‘z—L—' .
Rh( ) ‘

Thus, the dimensions of the mirror and the circular slit may be determined /391
in the final analysis by the relationship between the transverse and longitudi-
nal trap dimensions.

We shall distinguish between two special cases: we shall call the trap
elongated in the case TR < 1, and shall call it shortened in the case IR 5 1,
L ‘ L

In the case of an elongated trap, in all the formulas cited the Bessel
functions may be approximated by their values in the case of small arguments.
Thus, equation (6) assumes the simple form



ﬂ__._
-2 L (7)
For a greatly shortened trap, we may employ the asymptotic expression for
Il(kR). In this case, assuming that kro < 1 just as previously, we obtain

___. == — .

Consequently, for one and ‘the same c1rcular slit width, the elongated
trap may be characterized by a smaller mirror radius as compared with the
shortened trap.

The fields described above are symmetrical with respect to the z = 0
plane. Asymmetrical magnetic fields may be described by the vector potential
(0, A,, 0) with the component A, :

¢’ ¢
A, = [11 kr)sin kz 4+ al, ( )cos—-]
and
Hr= H - allo . k2
oll(kr)coskz [1( ) SN —— 5 (8)
H, == — Hyly (kr) sinkz~———§H—"lo —kg’— cos 5;—.

We may employ direct calculations to show that these relationships characterize
a trap having the length L, which is displaced with respect to the origin by
aNZ

8k

Assuming that o < 1, we may find the magnetic field strength on the mirror
axis:

the quantity Az = toward the smaller field (in this case, toward z < 0).

On the axis of the right mirror:(kz::>”.__3[jz%

[
o)™~

|
H+-———IIG‘§I f‘ 5'/1—_)'
. n aV? '
On the axis of the left m1rror:(kz=:——_7.—-—iz—) | /392
B !
_=Hy[l— 2.
f o(! 2V2)
Thus, we have 1@
2
H, — a : (9
+ | I
tvE

The surface of the zero z~component of the magnetic field may be found
directly from the second equation of system (8). 1In the case of an elongated
trap, this surface is a plane (within an accuracy of terms of the second
order of smallness with respect to %-) which is displaced with respect to the

geometric symmetry plane of the trap by the amount



2
A (k2) =% 1——!/7')“

Charged Particle Motion in the Trap Magnetic Field

(10)

Let us investigate particle motion in the magnetic field of an axisymmetric
trap. In this case, the Lagrange function has the following form
m [ - . . .
L= T(f2+ﬂw2+z’\'+—z-f(PAm.

Due to the cyclicity of the coordinate ¢, the generalized momentum P, is an

¢

integral of motion )
8 Pm=i=mﬂq)+—e—r}lw.;
9% ¢ f (11)
If the particle was produced or injected into the trap at the point (ro, zO),
thus having the azimuthal velocity r0$0, then -- according to relationship
(11) -- we have :
.o t
(p=(P0—roT—‘:._[rA(p‘_(rAm)0]'_,T' (12)

The Hamiltonian of the particle has the following form with allowance
for equation (11):
e 2
1 P‘D_?rAW)

1 - °
H =5 (P} +P)+ 2—,,7( ;

(13)

Therefore, the formulated problem may be regarded as the problem of particle
motion in the [r, z] plane in a field with the potential energy (Ref. 4)

. e 2
U(r,2) =5~ [mrg% - "Av"'” (14)
2m *
Taking the fact into account that the Hamiltomian of the particle in
the magnetic field is the integral of motion, we may find the region of the

possible particle motion

r

~~—~
w
O
w

1 mrip, — ’Z—[;AW —(rAyl :
> Oy (15)

2m r

where EO is the total particle energy (the equal sign in expression (15)

determines the boundary of the region). This inequality is fulfilled every-
where in the case U = 0, i.e., in the case

rAy = (rAgh + " rig,. | (16)
Thus, there is always a force line, which may be determined by equation

(16), in the vicinity of which the particles may leave the trap without any
hinderance.

The contour of the potential energy is determined by the coordinates of
the particle injection and by the initial value ¢O.

However, it follows from formula (15) that we may assume ¢0 = (0, without

restricting the generality. We must thus assume that the particle is not



produced at the point [rO, zO], but at any point of the force line (16).
: Therefore, the term mré&o will be omitted from this point on in expression (14).

When applied to magnetic fields whose force lines make acute angles,
equation (14) assumes the form

Ulr, 2= 5 ("m—’i" )2[11 (kr) sin kz 4 221, (kr.,)]’, an

m

if the particle was injected into the trap from the point r = r,, kz = - - . 394

O’

Figure 3 shows the contour of the effective potential energy (17). It
may be seen from the figure that slow particles, whose energy is less than U

3]

B,
will be reflected from the opposite mirror. After several collisions with the
magnetic walls, these particles will leave through the circular slit or will
return to the injection location.

The particles will only leave through the opposite mirror if their energy

exceeds the threshold value of UB. Let us calculate this wvalue. 1In the case

z = %- , we have

Ulr) = 2% (f"—H—")z[ll (kr) 4- —',0—/1 (kfo)]a-

mc

The potential energy minimum occurs in the case r = r., which may be determined

1
by the relationship .
/"3rf/, (krl) = kroll (kro).

In the case of axial motion at the exit from the trap kr, <« 1, and therefore

1
we have .
ry=<rg
Consequently, the particles will leave the trap from the opposite mirror,
being injected  approximately the same distance from the axis as from the trap
entrance. The penetration condition may be written in the following form

2
muy 2m ( cHy

-5 >
2 k2 \ mc

)’ 12 (kr).

In the case when kro << 1, this condition may be written as
R2>r0| (18)

ugme
where R, = 0 is the Larmor particle radius in the field H

2 eHO 0°
Consequently, only particles whose Larmor radius is greater than the
initial distance from the axis may pass through the opposite mirror. Particles

injected into the trap along its axis completely penetrate the trap indepen~

‘dently of their mass or velocity.

If particles having the same velocity but different masses are injected
into the trap at a given distance from the axis, only heavy particles for
which condition (18) is fulfilled will leave through the opposite mirror of
the trap.




If the particle mass is such that

! R£3 fo,;

where T, is the injection radius, they penetrate through the trap, without

colliding with the magnetic walls, and they leave it through the opposite
mirror. A bundle of particles injected with a velocity of v, parallel to the 1395
system axis has the following velocity of translational motion at the trap

output ——
o
oma)/ 1~ )
L

\
The bundle, which was rectilinear, is changed into a spiral bundle, The rota-
tional velocity of the bundle around the system axis is

L ‘ (20)

The spiral step is

r
0
h = 2uR, ]/ — (21)
Consequently, if the magnetic field changes into a homogeneous magnetic

field and a constant longitudinal field at the trap output, then the bundle
of particles will move along a spiral having the radius r and the step (21).
0

Let us now investigate particles whose Larmor radius satisfies the condition
RSL < I

Reflected from the mirror, these particles will oscilate within the trap be-
tween the magnetic walls until they leave the trap through the circular slit
or = through the input mirror.

Relationship (15), which determines the oscillation boundary, assumes the
following form for the case of acute angle fields

Iy (kr) sin kz - -ir"— Iy (kry) = & kR, . (22)

In the case of an extended trap kr << 1, the equation is simplified as follows
rzsin kr -+ 2R2r 413 =0.

Thus, the equations for the boundary surfaces have the following form

R I
f=:{:‘gﬁ;[li ‘/I—Rr—‘é smkz]. (23)

Expression (23) represents a family of four surfaces, two of which
correspond to the region z < 0, and two others correspond to the region z > 0.
Based on the fact that the region r < O does not exist in cylindrical coordinates,
it may be readily shown that for the region z < 0 the boundary surfaces are
determined by the following relationships

R o
0= —l—sm L~ [1 — ‘/ 1 — ——Ri sin kz} ) 20
R ‘ o
f.::—zi-nd%;[l"*—“/l—'ég SlnkZ].




' In the case z + 0, the first boundary surface remains at a finite distance
. from the axis o ‘ .
1 r 0 S -'——0—-, ! H

- and the second boundary surface passes through the circular slit.

In the case z > 0, the equations for the corresponding surfaces have

‘the following form
R, o
n= oo [l — L/f 1 — E;—sn1kz\,

I S ‘ (26)
=smkzll+|/l———smkz] o
The relationships obtained determine the cuspidal point of the particle from
the opposite lateral mirror in the case ry > Rl' This point is characterized
by the fact that r, =1r, - i.e., .
. ﬁnkz==§%-‘ (27)
0

It follows from (22) that both boundary surfaces are contracted to the "eigen"
particle force line when Rl decreases -- i.e., to the force line where the

particle was produced. However, the cuspidal point never changes in the

region z < 0. ~When R, decreases, the region of possible motion degenerates

into a narrow band which includes the eigen force line, in which the particle
undergoes almost adiabatic motion.

Classification of Particles by Initial Parameters

Let us investigate the influence of the initial input radius of the
partlcle Ty and its angular velocity ¢O on the nature of the motion for constant

Particles entering the trap at a sufficiently large radius cannot inter-
sect the plane z = Q, because all of their translational energy is changed into
‘transverse energy. ‘In the case r = R, the lower boundary of the region of
motion intersects the circular surface of the slit in the case z < 0. Accord-
ing to (25), this occurs for

rg > l/ikg,—R

' Consequently, all of the particles, entering the trap with one and the
_,same Larmor radius Rz, are divided into three catagories:

(1) 1In the case 0 < s < Rz, the particles penetrate the trap, moving

" along a spiral around the axis, and leave through the opposite mirror;

(2) 1In the case Ry < rg <Y 2RgR , the particles are reflected from the



-t

opposite mirror and, being reflected somewhat from the trap magnetic walls,
they leave it close to the surface (formed by the rotation of the eigen force
" line) through the circular slit, or through the input mirror;

(3) 1In the case T, ;\/ZRQR, the particles, which do not undergo even one

oscillation, move in the direction of the magnetic force line and leave the
trap through the circular slit.

0. A. Lavrent'yev (Ref. 3) first divided particles into three classes.
However, it should be pointed out that in the case ry < R2 the particle may

pass through the trap only when it arrives at the opposite mirror at the

distance T, from the axis. If it appears at the distance r # r, (more or less),

. . . il
then -- as may be seen from the effective potential energy in the case kz = 5

it may be reflected from the mirror. Therefore, the condition ry < RQ is not

absolutely definite.

The influence of the intial angular velocity of the particle upon its
motion may be clarified by means of formula (12). When applied to the fields
under consideration, it assumes the following form

eHo\ ( 11 (k2) sin kz r
= ;;EQ‘){ 1( = "Z‘%[(di )'kfo(P0+11 (kro)l} (28)

All of the relationships obtained above are valid in the case of an initial

rate of ¢, - if we substitute g determined as follows, instead of ry:

ko kr) = ko (572} roo + [y (er)|. (29)

If kro << 1 and krg << 1, then formula (29) assumes the form
h _—_rol/ 1+ 2 (57) oo (30)

Consequently, for particles with éO > 0 the conditions for their penetrat-
ing the trap are the same as for particles with $0 = 0, but with a larger in-

put radius. 1In the case ¢0 < 0, they are the same as for particles with a
eH
smaller input radius. 1In particular, in the case ¢ - %-——g, the particles
mec
penetrate the trap, without being reflected from the magnetic walls. If the
magnetic field continuously changes into a homogeneous field of a solenoid at

‘the trap output, the particles having ¢0 -1 eH0 will move in this field
. 2 “mc
with ¢ & O

Motion of a Relativistic Particle in the Trap

For particles having relativistic velocities, the generalized momentum

P, has the form P¢==;%z?%a+”i’Awﬂ (31)




it

Therefore, we have ‘ ‘ © /398
eHo B’)l/'{h (kr) sin k2 1 kraly (krn)] ‘
*

R o i

k2r2

The law of conservation of energy is

kroly (R 2
r’—f— Z’+ (eHo) — ) [Il (kz) sin kz + rnklﬁi"m)] = Vtzj' (32)

R PRPU SO

Since all of the results given in ﬁhe preceding sections were obtained
from these laws of conservation, all tha conclusions are valid, if we substitute
he relativistic Larmor radius '

! e e RSZ,.:‘;’F '

. T

instead of RK . When they have sufficiently large energy, the particles may

always satisfy the condition r

o < Rl’ and sufficiently relativistic particles t

Wlll penetrate the trap without collldlng with the magnetic walls.

l
] A magnetic trap of this type may be utilized for transforming the linear :
lux of relativistic electrons into a rotating bundle with parameters determlneq
by relationships (19) - (21). However, the small step of the spiral is only }

possible in the case &_ Ty Therefore, it is only possible to produce a

] eH0 :

greatly retarded rotating bundle of electrons for sufficiently strong magnetic §
flelds.' For example, for an electron ernergy of E = 50 Mev and T, ="10"cm, the

the relationship Iy = R2 is realized for magnetic fields of B0 v 20,000 oe.

Investigation of Particle Trajectories in a Trap

The equations for the radial and longitudinal motion have the following
form

f . . e -

4 f*-r(P2=;’-{E-fq)f[M

f
; Z—————f(pH,,
!

i

pr with allowanceﬂéor equations (3) and (28)

i ,
: - inkz | Iy (kro) k
i F—r g’b)Tukr)sm 2y l(k;:)ﬂ fo] %

| me kr
; b , 11 (kro) k ‘
x [(%ﬁ_lo(kr))sm kz 4—‘k—] =0, (33)

kr K

z +r (eﬂo) Ill (k2) sin kz + 1y (krn? kr.,} I, (kr) coskz =0,

MR A BT A s nam

ﬁ¥ In the case of an extended trap, or in the general case of axial motion, /399

N when kr < 1, the equations (33) are significantly simplified
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Figure 3
. i tHo 2 . I’g
r+-4-(”-w—) r(smzkz-——r;— =0, | (34)
w1 jeHs\2 . o
z+7(§n-‘:—") kr? (sm kz + —,%) cos kz =0.

Equations (34) were studied by a numerical method on a UMShN computer. The
computational results are presented in the graphs shown in Figures 4-6 in
dimensionless coordinates ¥y = kr, ¥3 = kz, where r is the particle radial dis-

placement from the trap axis; z -- its longitudinal coordinate. The initial
parameters of the problem are
mv,c
y,= kR wrereR) = 'e—l'iLo_’
mv"c
y‘ = kR I ,whereR = eHo

Here v and v“ represent the

particle velocity components which

are perpendicular and parallel to the
system axis at the moment it is in~

025 ‘ jected; H, —- magnetic field strength

Sisap a5 o o5 w5 on the axes of the trap mirrors. Fig-

ures 4-11 show the trajectories of

Figure 4 particles injected into the trap
through the left mirror with the para-
meters

Kr

11



Y,=0; =01 andkR=0,78, ys=— 1,57.
|

In accordance with the general assumptions, one would expect that in the
case yj < 0.1 the particles would penetrate the trap completely, and in the

case y1 > 0.28 they would move toward the circular opening, without intersecting
the plane z = 0.

Numerical computations show that direct penetration of a particle in-
jected parallel to the axis is observed for Yis which is somewhat less than
follows from energy considerations. In the case Y, = 0.1 the particles
penetrate the trap completely only in the case yl(O) = 0.07 (Figure 4). The
particles remain in the trap for the time t = 0.460%. When yl(O) increases,
the following occurs. For values of yl(O) which are close to the lower energy
limit (for example, ¥y = 0.08), the particles move in the region z < 0, turning
by the angle ¢, and after interéecting the z = 0 plane they begin to rotate
around the axis r = 0 (Figure 17). This rotation is asymmetrical with respect
to the system axis, which leads to particle oscillations in the [r, z] plane.

Being reflected from the opposite mirror, the particles return to the point of
injection and leave the trap (Figures 5-8). 1In this case, the particles remain 400

L

05

S5 -0 05 0 05 10

Figure 5 : Figure 6
repeated rotation
in the trap a relatively long period of time, due toAn the vicinity of the

mirror with a small spiral step (t=1.236; 0.782; 0.775; 0.567.. .,,respectively,in
Figures 5-8). Repeated particle reflection is only possible when it moves

toward the input mirror at a large distance (r >>r0). The outflow of the

particle through the circular slit is thus more probable. The particle
oscillates the greatest number of times between the magnetic walls in the case
vy, = 0.105 - 0.110 (r = 0.757; 1.10 respectively, in Figures 9,10). With an

increase in Yy» the number of these oscillations decreases (Figure 11), and in
the case yl:; 0.28 the particles leave (during the time t = 0.407) the circular

slit, without oscillating once between the magnetic walls.

* The time T is given in units of 103 mc  (Figures 4-11) and 100 mc (Fig-
ures 12-16). efg el

12
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Thus, the particle is held in the trap only when vy exceeds Y, to a very

small extent. This result is more clearly apparent when particles are in-
jected into the trap with y,=0.0044, y,=0, y3= -1.57 (Figures 12-16). The value

f . .
bpcorresponds to a stronger magnetic field. 1In this case, the particle pene-
trates the trap only in the case vy = 0,0022 (Figure 12). The particle re~

mains in the trap for the period of time T = 0.0079. 1In the case vy NV, the

particles are relatively "confined" (t = 0.0243). In this case they rotate a /401
large number of times in the trap mirrors (above 100) and are reflected

50 95 0 05

Figure 10

wnl

025 ‘
Ty = P K ]
Ly 19 05 0 05 10 15

Figure 11 Figure 12

repeatedly from the magnetic walls (more than 23 reflections) (Figure 13). 1In
the case vy = 0.01, the particle stays in the mirrors a relatively small period

of time. After being reflected about 15 times from the magnetic walls, it
leaves the trap through the circular slit (Figure 14, T = 0.015). When the
parameter ¥1 increases further, the particle leaves the trap through the

circular slit, without intersecting the plane of the zero magnetic field (Fig-
ure 16, 1 = 0.0049). Figure 15 (yl = 0.03) shows the very small probability

13



Figure 13 Figure 14
Al Kr
075
109
05
025
025
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5 0 <05 0 |
Figure 15 Figure 16

that a partlcle may be reflected from the lateral slit and leave the trap (in
the time 1t = 0.012), within an accuracy of its initial trajectory. Numerical
integration of the particle equations of motion with other values of the magnetic
fields Y, = 0.05 and v, = 0.15 only substantiates the general picture of

particle motion obtained from the graphs shown in Figures 4-17.

The following conclusions may be /402
reached from an investigation of the

¢ s .
; ] A1) trajectories.
2042 " 1. Particles injected parallel to
0l ! the system axis penetrate the trap, if
%n the injection radius is less than 0.7 R,.
1
0 01 02 a3 04.05 05 g7 i In the case ry = 0.7 - 0.75 R/, they
leave the trap, rotating around the
Figure 17 system axis, and form a spiral with a

relatively small step. The spiral axis

is displaced with respect to the system
geometric axis, and this displacement increases with a decrease in the distance
from the axis when the injection velocity remains unchanged. The displacement °
increases, if the particles are not injected parallel to the system axis.

In the case 0.7 Y, LY 2 Yy the particles which are injected parallel to

14
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the axis are reflected from the opposite mirror, although the particles which
are injected at a certain angle to the axis can penetrate the trap if they
reach the opposite mirror with a radius which is close to the injection radius.

Particles reflected from the opposite mirror can remain in the trap for a
period of time on the order of el remaining primarily in the trap mirrors.
H
2. In the case Y1 2 Y, the particles are relatively "confined". The

particles can be reflected somewhat from the trap magnetic walls and leave it
primarily through the circular slit. The number of reflections from the mag-
netic walls depends essentially on the magnetic field magnitude. 1In the case
Y, = 0.1, the particle is reflected somewhat (5-8 times) from the walls, and

in the case v, = 0.0044 the number of reflections amounts to several tens

(more than twenty).

3. 1In the case ¥y >‘/2y4kR, the particles leave the trap through the

circular slit. The time that the particles remain in the trap is commensurable
with the time of free flight.
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